
An Introduction to Rust
if you don’t know systems programming

Why Rust?
Rust is a fast and memory-safe programming language with a strong type system
and declarative memory management. It’s very focused on letting you write
correct code, but can be hard to learn because of the restrictions it imposes to
ensure this.
Rust also has really good error messages, well-written documentation, and
excellent tools that make writing code and debugging easier. I like it because it
helps me make sure that my program is doing exactly what I want it to. I hope
you like it too!

Getting started
Where do I write Rust? Rust has two language servers that attach to your editor
to analyze your code while you write it, rls and rust-analyzer (most people use
the second). If you’re not already attached to a text editor, VS Code’s rust-
analyzer extension is really good!

Where do I find documentation? Documentation for Rust’s standard library is
at doc.rust-lang.org/std/index.html. Documentation for crates like macroquad
is at docs.rs/crate_name.

What’s cargo? Cargo is Rust’s package manager and build system. It downloads
crates from crates.io, runs projects, runs tests, generates documentation,
manages dependencies, and more! You use it from the terminal---if you’re not
familiar with it, there’s a tutorial linked on the last page.

An example
I’m going to walk through an example of an extremely minimal 2D game using
the library Macroquad. First, you want to make a new crate (a project) with
cargo. In the terminal, navigate to the folder where you want to make your
project, and run the command:

cargo new --bin cool-game

This will create a new folder in that directory, cool-game. It will contain a src/
directory, where your Rust files will go, and a Cargo.toml file, where you’ll list
the dependencies of the crate---in this case, just Macroquad (version 0.3.10).

At the end of the file, under [dependencies], add:

macroquad = "0.3.10"

and save the file.

Now, open the main.rs file in the src/ folder and replace its contents with some
setup code for Macroquad, taken from its documentation page:
docs.rs/macroquad/0.3.10

use macroquad::prelude::*;

#[macroquad::main("cool game")]
async fn main() {
 loop {
 next_frame().await;
 }
}

You can run this from the terminal with the command cargo run, and a window
with a black background should pop up.This isn’t particularly interesting, but
Macroquad provides functions we can draw with:

loop {
 clear_background(DARKBLUE);
 draw_rectangle(350.0, 250.0, 100.0, 100.0, PINK);
 next_frame().await;
}

Now when we run this there’ll be a blue background and a pink square in the
middle.

a macro/attribute that
tells Macroquad what the
title of the game is, and
to use the function below
to run the game

Macroquad uses async/await to let its games run in the
browser, but you don’t need to worry about it here

import Macroquad’s
functions to this file

A tour of some basic syntax
We can add an if statement at the beginning of the loop to break out of it (then
close the window) when the player presses the Q key:

if is_key_down(KeyCode::Q) {
 println!("thanks for playing!");
 break;
}

no parentheses needed
around the condition

A keycode is an enum, or a type that can be
one of several variants. For example, defining
an enum Pet { Cat, Dog } allows you to
say that your pet is a Pet::Cat or a
Pet::Dog, but nothing else.

println! is a macro (you
can tell because of the !)
used to format and print
things to the console

What about drawing many things?
Here’s a for loop:

for i in 0..5 {
 draw_rectangle(
 150.0 * i as f32,
 250.0, 100.0, 100.0, PINK
);
}

You can iterate over a range or a collection.

let positions = vec![100.0, 250.0, 400.0, 550.0];

for x in positions.iter() {
 draw_rectangle(x, 250.0, 100.0, 100.0, PINK);
}

i is an integer, so we use as to
cast between number types
(floats to integers, etc)

declare variables with let. You don’t need to
say what type it is unless it’s ambiguous (if
the compiler gets confused and tells you to)

vec! is a macro that gives a
shorthand to declare Vecs,
which are like arrays

a range from 0 to 5
(not including 5)

There are always options
Rust doesn’t allow null variables, and you have to define what value a variable
holds before using it. For example, this won’t compile:

let positions;
for x in positions {
 draw_rectangle(x, 250.0, 100.0, 100.0, PINK);
}

If you want a variable to maybe hold a value, you can use the enum Option, and
use a match statement to check if it’s Some(value) or None.

let maybe_positions = Some(vec![100.0, 250.0, 400.0,
550.0]);

match maybe_positions {
 Some(positions) :> {
 // loop through the x positions in rects
 for x in positions {
 draw_rectangle(x, 250.0, 100.0, 100.0, PINK);
 }
 },
 None :> { /* do nothing */ }
}

a match statement is an if statement that
compares one variable against the values on its
branches. Often it’s used to check what variant
of an enum a variable is, but can also match on
other types like numbers or strings.

Data Structures
Games are usually interactive, so let’s make a player character. We can define a
struct---like a Java/Python class---to hold data about our game.

struct Game {
 player: Rect,
}

We can implement functions for our Game with an impl block.

impl Game {
 fn new() :> Self {
 Self { player: Rect::new(50.0, 50.0, 25.0, 25.0) }
 }

 fn update(&mut self) {
 if is_key_down(KeyCode::Up) {
 self.player.y -= 1.0;
 }
 if is_key_down(KeyCode::Down) {
 self.player.y += 1.0;
 }
 if is_key_down(KeyCode::Right) {
 self.player.x += 1.0;
 }
 if is_key_down(KeyCode::Left) {
 self.player.x -= 1.0;
 }
 }

Macroquad gives us the type
Rect, which has an x and y
position, a width, and a height

a rectangle at (50, 50) with
width 25 and height 25

Self is shorthand for the
type of the impl block

 fn draw(&self) {
 clear_background(DARKBLUE);

 draw_rectangle(self.player.x, self.player.y,
 self.player.w, self.player.h, PINK);
 }
}

Then replace the contents of our async main function with

let mut game = Game::new();
loop {
 if is_key_down(KeyCode::Q) {
 println!("thanks for playing!");
 break;
 }
 game.draw();
 game.update();
 next_frame().await;
}

And we’ll have a pink square on a blue background that we can move with arrow
keys. Yay :)

if a function doesn’t have a
self parameter, call it with
Type::function_name()

if it does, call it with a [.] on a
variable of the type the
function is implemented for

no this like in Java; need to
explicitly include self
parameter like in Python

What’s up with the mut keyword?
All variables in Rust are immutable by default, so we have to explicitly tell Rust
that we want to be able to change it. This might seem weird and restrictive, but
Rust is very cautious: it doesn’t want you accidentally modifying data that
shouldn’t be changed.

Likewise, when defining our game’s update method, we had to add a mut
keyword to let us modify the game state.

fn update(&mut self) { ... }

But what about the &?

Detour: Ownership
Every value in Rust can only owned by a single variable. For example, if we try to
assign our game to another variable,

let mut game = Game::new();
{
 let mut game2 = game;
 // do things with game2
}
loop {
 game.draw();
 game.update();
}

This won’t compile because the game now belongs to game2 after assigning the
value again, so the first game is now invalid. Rust doesn’t want multiple variables
to own the same data at the same time. This has to do with how memory
management works in Rust, but I won’t get into that here (on the final page there
are links to people who explain it far better than I could).

Borrowing
But sometimes you want values to be accessible or modifiable from different
locations. Here you would borrow game with a reference using the & symbol,
which points to the data at a variable without moving it.

let mut game = Game::new();
{
 let game2 = &game;
 // do things with game2
}
// ...

And this would compile! If you wanted to use game2 to modify game, you would
make the reference mutable:

let game2 = &mut game;

You can have as many immutable references to the same value as you want, but
only one mutable reference. Like ownership, Rust hates it when multiple things
are able to modify the same data at the same time.

Rules of thumb1

Every value can only ever have either:
1. No borrows
2. One or more immutable references (&)
3. Exactly one mutable reference (&mut)

Ownership and references are tricky concepts, so don’t worry if you don’t
understand them at first. You’ll get it!

1 this list was stolen from CS181G (spring 2021) course notes by Prof Osborn. Thanks
Prof Osborn

Now you have a tiny game and know some basics of Rust. Congrats!

Pro tips
Read the error messages!
Be patient!
You’ll be okay!!

Resources
Rust book: https://doc.rust-lang.org/book/
Rust documentation: https://doc.rust-lang.org/std/index.html
Crates (packages): https://crates.io
Crate documentation: https://docs.rs
Terminal tutorials: https://blog.balthazar-rouberol.com/discovering-the-
terminal, https://www.learnshell.org/, https://coolguy.website/map-is-the-
territory/introduction.html
More in-depth explanations of ownership and references:
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html,
https://www.youtube.com/watch?v=8M0QfLUDaaA (no captions but good)

Credits
Ferris image from rustacean.net // draws inspiration from the Rust book, Prof
Osborn’s CS181G Rust intro notes, and Becca Turner’s RustConf 2020 talk

serif font is Elstob // monospace font is Victor Mono

written by Cynthia Li // made with

